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Aristotle's dictum scio nescio (I know that I don't know) may serve as a source of enhanced
performance for organizations. Awareness of nescience sets the direction for further inquiry, as

managers tend to move in the direction that they believe will reduce nescience most. However,

nescience is di±cult to quantify, so, to date, managers have primarily relied on intuition. This
paper introduces a theoretical framework for managing nescience that is based on information

theory. This framework is tested in three exploratory empirical studies that take place in highly

contrasting settings: semiconductor manufacturing, medical diagnostics and social media an-

alytics. All three studies demonstrate that metrics related to information entropy can be used to
quantify nescience. However, practitioners value the framework and its metrics more highly in

the settings where the quality of or access to information drives successful product development.

The problems encountered in these settings tended to be well-structured, or they were converted

from being ill-structured to being well-structured. Further study of more highly contrasting
practical settings will be required to determine whether frameworks based on information theory

can serve as foundations for a broadly based, pragmatic theory for managing nescience.

Keywords: Quantifying nescience; information theory; entropy; semiconductor manufacturing;

medical diagnostics; social network analysis; analytics.

1. Introduction

Aristotle's dictum scio nescio (I know that I don't know) may serve as a source of

enhanced performance for organizations. Awareness of nescience sets the direction
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for further inquiry, as managers tend to move in the direction that they believe will

reduce nescience most [Hasenauer (2015)]. However, nescience is di±cult to quantify,

so, to date, managers have primarily relied on intuition to decide where inquiry

should go next.

The purpose of this paper is to investigate whether nescience can be quanti¯ed in

a manner that is of value to practicing managers in industry. The paper proposes a

theoretical framework for managing nescience that is based on information theory.

The paper consequently addresses the following research question: Can information

theory act as a theoretical foundation for managing nescience in a practical setting?

The paper subsequently presents three exploratory studies, which investigate how

nescience is managed in three highly contrasting industrial settings. The ¯rst study

scrutinizes fault reduction and yield management practices in semiconductor

manufacturing and process development. The second study examines automated

diagnosis of osteoarthritis. The third researches how a social media analytics ¯rm

identi¯es key in°uencers within the market space of one of its clients.a In all three

studies, entropy-based metrics that the framework provides were applicable to

managing nescience, implicitly in the case of semiconductor manufacturing but very

explicitly in medical diagnostics and social media analytics. Approaches based on

information theory were considered particularly valuable in the medical diagnostics

and social network analytics studies, where they comprised a key aspect of the core

technologies of the products and services that were under development. Thus, the

theoretical framework presented in this paper can be considered highly pragmatic in

the sense of Peirce [1878] and James [1907], at least in the two studies in which it

de¯nitely \works."

The limitations of the theoretical framework presented in this paper can primarily

be derived from context. From the point of view of management practice, the

framework \worked well" in settings like medical diagnostics and social network

analysis, where successful product/service development is driven by the quality of

information [Ljuhar (2016); Ljuhar et al. (2016)] and by access to information,

respectively. Problems encountered in these settings were considered well-structured

[Pople (1982); Reitman (1965); Simon (1973)], or they could be converted from being

ill-structured to being well-structured. By contrast, practitioners did not deploy the

framework in semiconductor manufacturing and process development, even though

entropy-based metrics characterize key aspects of the problem-solving process in

that industry quite well [Weber et al. (2002)]. The semiconductor industry is driven

by urgency [Leachman and Ding (2007)], yield [Bohn and Terwiesch (1999)]

and capital productivity [Silverman (1994)], and the practitioners observed in that

setting were persistently confronted with problems that were ill-structured.

The primary contribution of this paper consists of developing a theoretical

framework that quanti¯es nescience and testing that framework in the three

exploratory studies that take place in highly contrasting industrial settings. Moving

toward a more generalizable, pragmatic theory of nescience will involve further

aPreliminary results of the research described in this paper have been presented in Weber et al. [2017].
This paper presents additional empirical ¯ndings and theoretical arguments.
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research that assesses the normative value of the framework presented in this paper.

In that research, the investigators will have to determine whether the framework

\works" or \does not work" from the point of view management practice in a

multitude of di®erent settings. Speci¯cally, will managers, who claim to be prag-

matists when asked about their management philosophy [Spender (1996)], ascribe

\cash value" [James (1907)] to the theoretical framework proposed in this paper?

2. Background

Signi¯cant theoretical work on nescience has already been done. For example,

Shackle [1983] proposes that economic activity cannot be managed in totality be-

cause of \unknowledge" of the future. He believes that individuals (and managers in

particular) continuously have to make choices whose consequences they do not

understand. Yet, making a choice, or even not making it, has inherent consequences

in itself. These choices in°uence downstream choices that could be made in the

future by the individual him/herself or by other individuals. However, a priori, it is

impossible to know for certain when these choices have to be made or what the

nature of these choices will be.

García-Leiva [2018] di®erentiates between \nescience" and \ignorance". Both

words are traditionally de¯ned as \a lack of knowledge or awareness." However,

García-Leiva argues that subtle di®erences in meaning appear, when choice is in-

troduced into the de¯nition of these terms.

\Ignorance refers to the lack of knowledge when knowledge is there

(we do not know but we could do so, for example, by reading a

book), and nescience refers to the lack of knowledge when knowl-

edge is not there (we do not know, and it is not possible to know,

since nobody knows)." [García-Leiva (2018, p. 19)]

García-Leiva divides the unknown into two parts: the known unknown and the

unknown unknown [García-Leiva (2018, p. 26)]. He refers to the known unknown as

known problems for which no solution has been found. By contrast, he de¯nes the

unknown unknown as a set of problems that has not even been identi¯ed. For

example, the author considers diabetes part of the known unknown, because we

know what diabetes is and we are aware that nobody knows how to cure it. However,

AIDS in the 1960s would have been part of the unknown unknown to the medical

establishment, because at that time the complex of phenomena associated with

AIDS had not yet been observed by the medical establishment. AIDS has since

become part of the known unknown. While there is no cure for the syndrome yet, the

phenomena with which AIDS is associated are observed regularly and studied in-

tensely. For both ailments, research directions are generally set by what we know

that we don't know.

Klein [2001] argues that knowledge and nescience are two sides of the same coin,

which, in conjunction, act as the engine for science and innovation when they are

integrated properly. In practice, the challenges to managing knowledge come from

what is partially unknown rather than totally unknown. Klein lists a series of
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approaches for managing what he terms \fuzzy knowledge" [Klein (2001, pp. 7–8)],

which include heuristics [e.g. Gigerenzer and Todd (1999)], intuition, dialog/com-

munication, scenario management [e.g. Graf (1999)], systems thinking [e.g. Senge

(1990)] and learning by experience. These \instruments of knowledge" catalyze

innovation and make knowledge about nescience productive. They are ideally suited

to make knowledge actionable, especially in times of information overload. They

encourage organizational learning, and they optimize the \knowledge e±ciency" of

employees. Fuzzy Knowledge Management, as de¯ned by Klein [2001], provides a

foundation for acting °exibly and remaining decisive in complex situations. It also

successfully secures productivity and innovation within an enterprise, thereby

enhancing the enterprise's competitiveness.

The concept of nescience may have broadly based applications pertaining to

problem solving, which relies heavily on iterative trial-and-error processes [Baron

(1988, pp. 43–47)], especially if the problems to be solved are of a technical nature

[Allen (1966); Marples (1961)]. (Iterative trial-and-error has also been identi¯ed as a

signi¯cant attribute of learning by doing [Arrow (1962)], learning by using [Rosen-

berg (1982)], learning before doing [Pisano (1996)], design [Alexander (1964); Simon

(1981); Smith and Eppinger (1997a,b); Wheelwright and Clark (1992)] and experi-

mentation [Adler and Clark (1991); Bohn (1995); Iansiti and West (1997); Pisano

(1996); Thomke (1998)], which are all cognitive organizational phenomena that

prominently depend on problem-solving practices.) If one can precisely specify a

trial-and-error process that will lead to a desired solution of the problem in a

practical amount of time, then the problem is considered well-structured [Pople

(1982); Reitman (1965); Simon (1973)]. The problem solver can then partition a

problem's \solution space" ��� the domain in which the problem's solution is known

to lie ��� until the problem is solved [von Hippel (1990)]. Essentially, the problem

solver reduces nescience about the problem until nescience is no more. If trial-and-

error approaches provide no clear path to a solution on their own, then the problem

is considered ill-structured [Pople (1982); Reitman (1965); Simon (1973)].

Schatten et al. [2003] argue that progress in a knowledge society depends upon

the creation and dissemination of new knowledge. However, nescience, insecurity

and system complexity in general increase as knowledge is created and applied. New

problems arise, and systemic risk increases as a consequence [Füllsack (2002); Willke

(2002)]. Thus, the problem of managing nescience can be viewed as ontological in the

sense of Nonaka [1994]. Nescience increases as the spiral of knowledge creation

(socialization, externalization, combination, and internalization) involves an ever-

increasing part of an organization. This phenomenon has arguably resulted in a crisis

in knowledge management. As Stewart and colleagues point out: \Unfortunately,

contemporary technology for knowledge management is a hodgepodge of executive

IS, group-support systems, intranets, decision support systems, and knowledge-

based systems" [Stewart et al. (2000)] as cited on p. 1 of Schatten et al. (2003)].

Problems with acceptance by end users consequently arise.

Schatten et al. [2003] have accepted the fact that a growing knowledge base

inherently increases nescience, and that managing nescience is central to an orga-

nization's success. The authors intend to close the gap between nescience and
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knowledge management by integrating all roles of knowledge management ��� the

project user, the administrator, the project manager, the software system and in-

telligent agent ��� into the existing communications infrastructure. They propose a

question-related system, which establishes a need for answers and enables a market

for knowledge. They suggest that experts donate knowledge that they perceive to be

of greatest value to their user community. The true value of the knowledge can be

determined by monitoring the activities of the information seekers and the experts

themselves. User satisfaction and frequency of access are indicators of how e±cient

and e®ective the KM system actually is [Schatten et al. (2003, p. 1)].

All the above approaches would be improved upon, if a theory that quanti¯es

nescience could be developed, and if nescience could be measured directly. Under

these circumstances, managers could set policy in a direction that yields the greatest

reduction of nescience. For example, research projects could be chosen by the how

much they reduce nescience. More generally, managers could use nescience as

a criterion for setting priorities for problem solving and scenario planning [e.g.

Derbyshire (2017)]. Problems, whose solutions appear to reduce nescience the most,

would be attacked ¯rst.

García-Leiva's is working on a book whose goal is to describe in detail \the

Theory of Nescience, a new mathematical theory that has been developed with the

aim of quantitatively measuring how much we do not know" [García-Leiva (2018, p.

13)]. The author relies on concepts from the mathematical sciences that underlie

computer science (discrete mathematics, computability, coding, complexity and

minimum length) to establish the principles of nescience. He also identi¯es subjects

to which this theory could be applied [García-Leiva (2018, Chaps. 9–13)]. Potential

applications include the scienti¯c method and the evolution of knowledge, as well as

identifying new research topics, interesting research questions and potentially lu-

crative business opportunities. The author also contends that the theory has

applications in software engineering and quantum computing.

Unfortunately, to date, very little empirical work on managing nescience has been

done. Thus, the abovementioned theories have not been validated. These theories

also tend to be rather complex, which has prevented them from being applied in

practice. What is needed is a pragmatic, relatively simple theory of nescience, to

which managers can ascribe value [e.g. James (1907); Peirce (1878)]. Such a theory

would have to include quanti¯able metrics for nescience. Managers would also have

to be able to put this theory into practice without engaging in extensive philo-

sophical debates.

3. Theoretical Framework

In this section, we present a theoretical framework, which moves the state of the art

that was summarized in the previous section toward a more pragmatic theory of

nescience. This framework is not nearly as involved as what has been presented

in prior art [e.g. Antoniou (2013); García-Leiva (2018); Klein (2001); Natsikos

and Richter (2011); Schatten et al. (2003); Schneider (2007); Shackle (1955);

Willke (2002)]. Instead, it is based upon well-known principles of information theory
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[e.g. Abramson (1963); Beckmann (1967); Hartley (1928); Kullback (1968)], which

can be implemented in industrial settings much more readily. The framework follows

Shannon and Weaver's [1949] view that knowledge is certain information in the

sense of, \I know this to be absolutely true." It provides the following metrics

through which nescience can be quanti¯ed [Weber et al. (2002), pp. 411–412)]:

\A source of information reveals an amount of information I ðXiÞ whenever the source
is in state Xi . I ðXiÞ is therefore known as the self-information and is given by

I ðXiÞ ¼ �log10PðXiÞ hartleys; ð1Þ
where PðXiÞ isb the probability of occurrence of state Xi. Information entropy is

de¯ned as the expectation of I ðXiÞ, or the average amount of self-information per state

[Shannon and Weaver (1949)]. It is given by the random variable

HðXiÞi¼1 ¼ hI ðXiÞi ¼
Xm

PðXiÞI ðXiÞ;

¼ �
Xm

i¼1

PðXiÞlog10PðXiÞ hartleys=state:" ð2Þ

Information entropy is at a maximum when all states are equiprobable or PðXiÞ ¼ 1=m,

a situation that re°ects minimum knowledge, maximum uncertainty and maximum

nescience about the information source. Information entropy, and thus nescience,

decreases from its maximum value as PðXiÞ concentrates into fewer states. Information

entropy, and thus nescience, approaches zero as the probability of one state approaches

unity, and the probability of all other states approach zero. In other words, information

entropy and nescience approach naught as the probability of an event occurring in a

speci¯c state approaches unity. The relative entropy can thus be used to compare the

nescience of the ¯nal state of an experimentation cycle to the nescience of its initial state.

It can also be used to benchmark the amount of information extracted by or nescience

reduced by two di®erent, possibly unrelated experiments. Furthermore, approaches that

reduce nescience by decreasing information entropy can provide guidance to machine

intelligence. For example, diagnostic tools can increase the e±ciency of their searches for

anomalies by proceeding in a direction that reduces entropy the most [e.g. Ljuhar (2016);

Ljuhar et al. (2016); Rocha et al. (2008); Weber et al. (2017)].

Approaches that utilize information theory to quantify nescience can accommo-

date network e®ects [e.g. Nikolaev et al. (2015); Tutzauer (2007)]. For example,

entropy-based centrality identi¯es speci¯c loci within a network at which informa-

tion is highly concentrated, whereas entropy centralization quanti¯es the concen-

tration of information across the whole network [Mayande and Weber (2011)].

Entropy-based centrality for information °ow for all shortest paths (geodesics) be-

tween a node vi and all other nodes in the network vj is given by

Hi ¼
Xn�1

j¼1

Pi;j log Pi;j ; ð3Þ

bThe base of logPðXiÞ determines the units of information. The binary log2PðXiÞ is given in \bits"; the
decimal log10PðXiÞ is given in \hartleys"; and the natural logePðXiÞ is expressed in \nats".
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where i 6¼ j, where n denotes the total number of nodes in the network, and where

Pi;j represents the probability that information °ows between vi and vj . The total

entropy centrality for geodesic serial °ow, or entropy centralization across the whole

network, is given by

HT ¼
Xn

i¼1

Hi: ð4Þ

Progress toward a pragmatic, entropy-based theory of nescience can be made by

conducting research, which looks at the phenomenon from the point of view of

managerial practice in industry. Such research could consist of a quantitative

analysis of how nescience in its various forms a®ects organizational performance or a

qualitative analysis of the processes through which nescience is reduced [Zenobia and

Weber (2012)]. Even a simple documentation of how entropy-based measures of

nescience can be applied in industry would help advance the cause of further study or

further application of the approaches discussed above.

4. Research Methods

To test the theoretical framework from the previous section, the authors of this

paper conducted three exploratory studies of how three di®erent organizations that

operate in three di®erent industrial settings manage nescience. The technical liter-

ature that pertains to each setting indicates that approaches to managing nescience

that are based on information theory are potentially applicable in all three settings.

The three speci¯c settings under study were chosen for their contrasting economic

environments, so that any commonality that emerges from the studies would en-

hance the generalizability of the proposed theoretical framework. The host ¯rms of

two of the studies did not grant permission to be named explicitly; instead, they are

identi¯ed via aliases.

The semiconductor manufacturing study was conducted in the integrated circuit

(IC) division, henceforth identi¯ed as Semorg, of a very large manufacturer of

computer and electronic products, henceforth referred to as Comptron. Semorg

consisted of an R&D facility and multiple manufacturing sites, all located in the

Western United States. Comptron has been involved in IC manufacturing and

semiconductor process development since the 1960s. The ¯rm's total annual revenue

exceeded US$ 10 billion throughout the duration of the study, of which slightly less

than $1 billion could be attributed to the e®orts of Semorg.

Leading-edge semiconductor integrated circuit manufacturers operate in an ur-

gent environment [Gersick (1988); Terwiesch and Bohn (2001)] in which the unit

price of the IC's to be sold erodes over time [Leachman and Ding (2007); Weber

(2004, 2013)] and the objective of problem solving ��� rapid improvement of quali-

ty ��� is clear to essentially everyone in the industry [Weber (2002)]. Thus, the

solution-spaces of problems related to semiconductor manufacturing are relatively

well de¯ned, but they need to be partitioned rapidly to avoid major loss of revenue

[Leachman and Ding (2007); Weber (2002, 2004, 2013)]. The key to this partitioning

is rapid concentration of information [Weber et al. (2002)].

Toward a Pragmatic Theory for Managing Nescience
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The osteoarthritis study was conducted at Braincon Technologies (in Vienna,

Austria), a consortium of technology ¯rms that are active in industries related to

health care [Ljuhar (2016)]. Braincon was founded in 1992. It acts as a wholesaler,

developer and solutions provider in diverse ¯elds such as radiology, medical imaging

and medical hygiene technologies. Given that Braincon never employed more than

15 people at any particular time, it has to be considered a small enterprise.

The solution spaces of problems pertaining to automated diagnosis of osteoar-

thritis are su±ciently well de¯ned for automated diagnosis to be attempted, because

problems of interest tend to manifest themselves near the surface of bones [e.g.

Benhamou et al. (1994); Pothaud et al. (1998); Rocha et al. (2008)]. The primary

motivation for automated diagnosis is early, more accurate detection of osteoar-

thritis, which leads to fewer invasive surgical procedures and less human su®ering

[Ljuhar (2016); Ljuhar et al. (2016)]. Cost and speed of diagnosis are also considered

as issues, but they are not the driving factors [Ljuhar (2016); Ljuhar et al. (2016)].

Thus, it is important to partition the solution space (concentrate information) ac-

curately, rather than speedily.

The social network analysis study documents how a social media analytics ¯rm,

codenamed SMAF in this paper, ¯nds potential clients in cyberspace for Xilinx, a

Silicon-Valley-based semiconductor ¯rm that primarily produces °oating point gate

arrays (FPGAs). SMAF was founded in 2011, and about $5 million have been

invested in SMAF to date. SMAF has never employed more than 6 people at any

particular time. Thus, it has to be considered a small startup ¯rm. In the study that

was conducted for this paper, SMAF's primary motivation was generating revenue

for Xilinx through discovery.

The economic environment of the social network analytics study is not particu-

larly urgent, but the solution space for the problem that SMAF addresses is not well-

de¯ned. The problem contains a high degree of ambiguity [Schrader et al. (1993)],

because initially SMAF does not really know where to look and for what it should be

looking. In other words, the degree of nescience is very high, but nobody knows how

high. Nonetheless, the proposed framework could be relevant, because the analytics

¯rm used information °ows as guideposts for it analysis.

The arguments made in this paper are primarily based on participative action

research [Chevalier and Buckles (2013); Reason and Bradbury (2008); Whyte

(1991)], where one of the authors was directly involved as a researcher and a prac-

titioner in one study. The authors performed a variety of di®erent roles in their

respective settings during their period of involvement, including planner, leader,

catalyzer, facilitator, teacher, designer, listener, observer, synthesizer and reporter

[O'Brien (1998)]. The intent was to produce a mutually agreeable outcome for all

participants [O'Brien (1998)].

All three studies in this paper transpired over prolonged periods of time: the

semiconductor manufacturing study from 1996 to 2016; the medical diagnostics

study from 2013 to 2017; and the social network analytics study from 2011 to 2015.

As required by O'Brien [1998], at the end of each study, all participants and

stakeholders were able to take responsibility for and maintain all processes and

practices that were developed in conjunction with the authors of this paper. Thus, at
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the end of each study, the participants were able to \e®ect desired change as a path

to generating knowledge and empowering stakeholders" [Bradbury-Huang (2010, p. 93)].

Direct observation of the participants by the authors at the three ¯rms under

study constituted the primary source of data for the three studies in this paper.

Secondary sources include evidence derived from papers in the academic literature,

presentations at practitioners' conferences and 104 retrospective, semi-structured

interviews. The respondents in the secondary source interviews were recruited by

snowball sampling. They were employed by 30 ¯rms in the industries under study,

not just the ¯rms under observation. The respondents tended to be technologists,

technology managers and entrepreneurs who were considered experts in the practices

under study. Audio and video recordings of interviews and of practitioners in action

were prohibited for reasons of con¯dentiality; data from primary sources and

interviews were recorded in writing by the researchers.

In their observations and interviews, the researchers speci¯cally watched for data

pertaining to variables that are associated with concentration of information, timing,

bene¯ts and costs. Variables pertaining to information included the number loca-

tions ��� physical or virtual ��� in which a problem could lie [von Hippel (1990)], as

well as the odds of a problem being found in a particular location. Issues of timing

typically pertained to when a problem was ¯rst identi¯ed and when it was solved.

Bene¯ts and costs could be ¯nancial (as in revenue gained or reduced cash outlays)

or human (as in better odds of correct diagnosis or whether a surgical procedure

could be avoided).

Data analysis consisted of identifying associations between the variables under

consideration. Theoretical constructs were built from these associations and vali-

dated in interviews with participants. A construct was considered as validated, if the

participants considered it useful or valuable in practice. In their interviews with

secondary sources, the researchers did not ask any questions from which quantitative

data could be elicited. Thus, none of the conclusions from this paper carry statistical

signi¯cance.

5. Finding Faults in Semiconductor Manufacturing

As it does in most industries with a large underlying knowledge base [Pisano (1996)],

success in leading-edge IC manufacturing, to a large degree, depends upon rapid and

early learning [Leachman and Ding (2007); Weber (2004, 2013)] in which problems

need to be solved as rapidly and early as possible for an IC venture to remain

pro¯table [Weber (2002)]. In other words, IC manufacturing is characterized by

radical experience curves [Weber (2006)]. Once a semiconductor process is producing

parts that can be sold, competitive advantage shifts to capital productivity

[Silverman (1994)]; [Weber and Yang (2012, 2014, 2016)]. The IC manufacturer

needs to amortize the billions of dollars of plant equipment e®ectively. A yield

problem can easily cost $20,000 per minute [Weber (2002)] in the form of idle

equipment or revenue loss. Thus, it needs to be diagnosed and treated within the

shortest possible time. This pattern was clearly observed at Semorg and con¯rmed

by secondary sources.

Toward a Pragmatic Theory for Managing Nescience
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Yield learning [Stapper and Rosner (1995); Weber (2004, 2013)] and yield

maintenance [Weber (2002)] are particularly important in semiconductor

manufacturing, because semiconductor manufacturing is a yield-driven industry

[Bohn and Terwiesch (1999)]. Yield learning and yield maintenance involves itera-

tive experimentation processes, which are repeated until all sources of yield loss are

detected, identi¯ed and eliminated, or until the cost of further experimentation

exceeds the bene¯t of the knowledge gained [Thomke (1998)]. Experimentation

consists of diagnosing electrical faults that cause yield loss (such as the defect in

Fig. 1), localizing their source within the manufacturing process, precisely identi-

fying the root cause, designing a solution for the problem, implementing the solution,

and assessing its impact on the manufacturing process as a whole [Weber (2002);

Weber et al. (2002)]. Localization has been the most time-consuming step in this

process [Weber (2002)]. Accelerating problem localization consequently constitutes

the most lucrative proposition pertaining to problem solving in an urgent and

capital-intensive environment [Weber et al. (2002)].

Problem localization can be accelerated in one of two ways: (1) by designing an

experiment that extracts more information per experimentation cycle or (2) by

shortening the experimentation cycle. Semiconductor manufacturers achieve the

former by designing experiments that look at the complete process [Bohn (1995, p.

33)]. They accomplish the latter by designing short-cycle experiments [e.g. Weber

(1992); Wein (1991)]. Essentially, the question is, how do we reduce nescience the

most rapidly? Do we eliminate more nescience by designing a more comprehensive

experiment that runs on a longer cycle or by performing a sequence of head-to-tail

experiments with shorter cycles that reveal less information in the aggregate?

An e®ective yield learning strategy consists of striking a balance between these

approaches [Weber et al. (1995)], whatever said balance may be. However, to exe-

cute such a strategy optimally and predictably, an IC manufacturer needs to

quantify nescience, or at least approximate it. Then, yield learning becomes yield

management, a set of practices that allows IC manufacturers to deliver on schedules

that have been devised years in advance [Stapper and Rosner (1995); Weber (2004,

2013); Weber et al. (1995); Weber and Yang (2012); Yang et al. (2013)].

In general, the problem-localization process proceeds in the following manner.

A product on a production lot is defective when it exits the fabrication facility (fab),

i.e. it contains an electrical fault. Failure analysis practices identify potential causes

of the fault, and suggest general areas within the manufacturing process in which the

problem may reside. The challenge is to identify the speci¯c process step that con-

tains the source of the problem as rapidly as possible. Yield analysis engineers

subsequently design short-cycle experiments that explore the regions of potential

trouble. These experiments reduce nescience by partitioning the solution space of

the problem. The more rapidly they do so, the better for the bottom line of the IC

manufacturer.

Unfortunately, experimentation is not for free [Loch et al. (2001)], and the cost of

an experiment in modern IC manufacturing is particularly high. An experiment that

consists of a lot of 12 wafers may cost as much as $10,000 to conduct, and, due to a

high degree of process noise in semiconductor manufacturing [Bohn (1995)], it would

C. M. Weber, R. P. Hasenauer & N. V. Mayande

1850045-10



have to be repeated many times for its conclusion to be valid. Experiments conse-

quently need to be conducted parsimoniously. Only experiments that reduce ne-

science dramatically within a short time should be performed.

In order to determine which experiments should be performed, Weber et al. [2002]

developed a method to measure the e®ectiveness of problem-solving practices, which

is based on information entropy as characterized in Eq. (2). If a state \i" in (2)

represents a particular process step within an IC manufacturing process, Xi con-

stitutes the event that a fault resides within \i", and PðXiÞ denotes the probability
of a fault (event) occurring in Xi, then HðXiÞ can act as a proxy for nescience for

problem localization in IC manufacturing. Information entropy, like nescience,

decreases as uncertainty with respect to the location of the fault decreases. If

HðXiÞ ¼ 0, then the defect is caused by a speci¯c process step with absolute cer-

tainty, and nescience (entropy) with respect to location has been reduced to naught.

The relative entropy can thus be used to compare the degree of localization at the

end of an experiment cycle to that of its initial state. It can also be used benchmark

the degree of localization achieved by or nescience reduced by two di®erent

experiments.

The stylized example in Fig. 2 illustrates how this works in an IC manufacturing

process that consists of 500 process steps. A batch (silicon wafer) of integrated

circuits has emerged from the production line. It contains a multitude of faults,

which failure analysis procedures at the end of the line have localized to process steps

X101 �X110. The source of the faults needs to be localized down to the individual

process step for corrective action to be taken. This is the job of the yield analysis

engineers.

Before they launch an experiment that localizes the source of the fault further, the

yield analysis engineers have no information as to which of the 10 process steps in

question contains the fault. This situation, equiprobability over X101 � X110, is given

Fig. 1. A physical defect in an integrated circuit interconnect layer that is likely to cause an electrical
fault (Courtesy: Applied Materials Corporation).
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by the probability distribution PðXiBÞ in Fig. 2. (All probabilities not shown in

Fig. 2 equal naught.) The yield analysis engineers have the option of launching two

experiments: E1 and E2. It is estimated that launching E1 will result in the prob-

ability distribution PðXiE1
Þ, whereas launching E2 will result in the probability

distribution PðXiE2
Þ. Which of these experiments do the yield engineers launch?

Table 1 shows that comparing information entropies provides the answer. Con-

ducting experiment E1 reduces entropy (nescience) by 0.107 hartleys per process

step; conducting E2 reduces entropy (nescience) 0.319 hartleys per process step.

Thus, ceteris paribus (all else being equal), experiment E2 is preferable to experi-

ment E1 from the point of view of localizing an electrical fault because it reduces

nescience to a greater degree.

Unfortunately, all else is not equal in IC manufacturing, an industry that is driven

by yield, urgency and capital productivity. E2 could be costlier to conduct than

E1, driving up the total cost of ownership of E1 [e.g. Dance, DiFloria and Jimenez

(1996); Martinez et al. (1992); Secrest and Burggraaf (1993)]. E2 could also have a

longer experimentation cycle than E1, which would diminish the value of E2 by

taking up extra time [Leachman and Ding (2007); Terwiesch and Bohn (2001);

Weber (2002, 2004, 2006, 2013)].

Mathematical models for trading o® cost and value of experiments have been

developed [Leachman and Ding (2007); Terwiesch and Bohn (2001); Weber (2002,

2004, 2006, 2013)] and validated in IC manufacturing [Leachman and Ding (2007)].

(One approach even uses information theory to quantify the value of ownership

of yield analysis technologies [Weber et al. (2002)]). However, limitations pertain-

ing to problem structure have prevented their implementation on a large scale.

Many of technical problems in IC manufacturing are ill-structured [Baron (1988);

0
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X101 X102 X103 X104 X105 X106 X107 X108 X109 X110

Probability of Loca�ng Problem in Process Step Xi

P(XiB) P(XiE1) P(XiE2)

Fig. 2. Probability distributions of a fault occurring in process steps X101 – X110.

Table 1. Comparing information entropies (in hartleys per process step) to

localize electrical faults in integrated circuits.

HðXiBÞ HðXiE1Þ HðXiE2Þ HðXiE1Þ–HðXiBÞ HðXiE2Þ–HðXiBÞ

1.000 0.893 0.681 �0.107 �0.319
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Pople (1982); Reitman (1965); Simon (1973); von Hippel (1990)] because they are

characterized by ambiguity, as well as by uncertainty [Schrader et al. (1993)]. Thus,

their solution space cannot really be de¯ned, and trial-and-error procedures cannot

really be implemented successfully.

In practice, the economic environment of IC manufacturing is so urgent that IC

manufacturers do not choose between one experiment and the other. They have to

conduct a multitude of experiments in parallel [Weber (1992)] to minimize the loss of

revenue that yield problems can cause [Bohn and Terwiesch (1999); Leachman and

Ding (2007); Weber (2002, 2004, 2006, 2013)]. Thus, experimentation capacity

becomes a constraint on pro¯tability and a source of competitive advantage [Iansiti

and West (1997)]. The approach described in this section is consequently rarely used

to di®erentiate between one experiment and the other, even though the entropy

metrics that it deploys characterize nescience quite well. Instead, the approach can

be used to discriminate between experiments that are worth conducting in an

environment characterized by constrained experimentation capacity, and other

experiments that are not.

6. Braincon Technologies: Predictive Diagnosis of Osteoarthritis (OA)

Osteoarthritis (OA) is the most common form of arthritis and a major cause of

disability [Bijlsma et al. (2011)]. The most prevalent OA localization is the knee

joint, a®ecting 24% of the general population [Pereira et al. (2011)]. Assessment of

knee-OA usually involves anterior, posterior and lateral radiographs to evaluate

medial/lateral joint spaces, osteophytes, sclerosis and joint deformation [Benhamou

et al. (1994)]. Such assessments are based on visual examination and grading of

radiographs by the individual physician using the Kellgren–Lawrence (KL) score

[Kellgren and Lawrence (1957)]. However, subjective parameter grading, perspective

errors and low reproducibility are limiting factors when assessing for OA. In addi-

tion, a study has shown that the single KL score agreement rate among three

physicians can be as low as 15% [Ljuhar et al. (2016)]. Moreover, OA assessments

based on visual radiographic parameter grading have limited capabilities when

investigating the early onset of OA.

A potential solution to these shortcomings can be found in the assessment of

selected regions of interest (ROIs) of the trabecular bone which provide signi¯cant

information on the status of OA. Studies in the medical community have shown that

local bone degradations caused by OA can be assessed by means of fractal analysis of

X-ray images. Such degradations a®ect in particular the subchondral/subarticular

area of the tibia (the tibia being the bone at bottom of the knee joint). The

assessment of bone surface roughness of the trabecular bone structure seems to be a

strong indicator of potential early signs of disease presence and progression [e.g.

Benhamou et al. (1994); Pothaud et al. (1998); Rocha et al. (2008)].

To date, no adequate standard has been developed to quantify such changes.

However, Braincon's latest development, the i3A [Ljuhar (2016); Ljuhar et al.

(2016)], provides a hardware and software solution for predictive diagnosis of

osteoarthritis, which, to date, has primarily been applied to the knee. Speci¯cally,
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the i3A can identify arthritis in its early stages by looking at the surface roughness of

bone structure surrounding the knee joint. The i3A consequently helps doctors de-

cide whether a patient needs surgery, pharmaceutical treatment or no treatment at

all. The goal is to minimize risk of fracture.

Braincon argues that morphologic changes to the trabecular structure are the

missing link for early disease prediction [Ljuhar (2016)]. As Fig. 3 suggests, its i3A

approach can identify anomalies in the bone micro-architecture at an early stage.

The i3A algorithm investigates the self-similarity of the gray values in an X-ray that

represent the trabecular bone structure of the subchondral tibia region. It does so by

calculating the Bone Structure Value (BSV), a normalized entropy value that has a

range from 0 to 1. A higher BSV is the result of a high grade of self-similarity which

can be linked to a stable bone micro-architecture. (For formulae of the BSV and its

relationship to Shannon's Entropy [Shannon and Weaver (1949)], please see [Ljuhar

(2016); Ljuhar et al. (2016); Rocha et al. (2008)].

The i3A reduces nescience in a manner that is analogous to the problem-solving

practices in the semiconductor industry. Prior to the analysis, one assumes equi-

probability, i.e. a BSV of 1. The i3A compares the gray scale value of each pixel to

the gray scale values of all adjacent pixels. High di®erentials in gray scale translate

into a concentration of probability, or a low BSV, just like the probability distri-

bution of an electrical fault concentrates around fewer and fewer process steps that

become increasingly \suspicious". In both situations, nescience is reduced auto-

matically, i.e. faults are localized by sophisticated diagnostic imaging tools [Schatten

et al. (2003); Weber et al. (2002)].

There are two big di®erences between the i3A and problem-localization practices

semiconductor manufacturing. First, the i3A operates in two physical dimensions,

rather than in one virtual dimension. The i3A scans the surface of the bone, whereas

solving problems in semiconductor manufacturing takes place on a virtual number

line ��� the sequence of steps in the manufacturing process. More importantly,

scanning the surface of a bone for anomalies constitutes a problem that is so well-

structured that Braincon was able to develop algorithms forthe i3A, which auto-

mate the trial-and-error processes that lead to the problem's solution [Ljuhar

(2016)]. By contrast, yield problems in semiconductor manufacturing and process

development tend to be highly ill-structured; their solutions require extensive (and

expensive) investigations before trial-and-error procedures can be applied successfully

[Weber (2002)].

The primary function of i3A is to improve the quality of diagnosis, which allows it

to act as a decision aid. Before the i3A was deployed, bones could either be diagnosed

as healthy or unhealthy depending on the measurement of bone mineral density. The

introduction of the i3A provides the decision makers (diagnostic physicians) with

three options: no arthritis, early-stage arthritis and late-stage arthritis. Each of these

stages warrants di®erent treatment. No arthritis means no treatment; early-stage

arthritis warrants a pharmaceutical approach; late-stage arthritis usually mandates

surgery. Thus, the ability to observe osteoarthritis in its early stages using the i3A is

enabling the widespread deployment of pharmaceutical approaches. In essence, the

i3A acts as an instrument of predictive maintenance. Relying on the information
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provided by the i3A allows a physician to prescribe the less invasive pharmaceutical

approach, thereby preventing the more intrusive surgery at a later date. Deploying

the i3A also reduces the frequency of calamitous false negatives. An incorrect

diagnosis of \healthy" on a brittle bone is becoming increasingly rare.

3D image
of bone

Cross-
section

(a) Normal joint

Cross-
section

(b) Early OA

of bone
3D image 

Cross-
section

(c) Advanced OA

Fig. 3. The three stages of osteoarthritis (adapted from Ljuhar [2016]).
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7. Locating In°uencers in Online Social Networks

Traditional marketing models are swiftly being upended by the advent of online

social networks [Chakrabarti and Berthon (2012); Khammash and Gri±ths (2011);

Longart (2010)]. Millions of consumers continuously partake in highly °uid con-

versations in virtual communities on social media platforms like Twitter [Dodds

et al. (2011)] in which the success or failure of a product or services may be decided

[Chakrabarti and Berthon (2012)] by a few key \in°uencers" that determine the

behavior of other actors in the community [Cartwright (1965); March (1955)].

Understanding the structure and behavior of online social networks, as well as

identifying the key in°uencers, may consequently constitute a crucial source of

competitive advantage for ¯rms that engage in new product development.

Despite the increasing importance of online social networks, nescience about the

phenomenon is widespread. Practicing ¯rms that are engaging with online social

networks neither have a reliable theory nor su±cient practical experience to make

sense of the phenomenon [Adamic and Adar (2005); Aral and Walker (2011, 2012);

Dellarocas et al. (2013); Li and Berno® (2008); Wiertz et al. (2010)]. For example,

social media analytics ¯rms like Klout, Kred, PeerIndex, and Traackr, who have

tried to analyze online social networks by ¯nding the individuals that have the most

friends and followers or generate the most output, have not been particularly

successful [Cha et al. (2009, 2010)]. Evidently, the individuals within a network who

have the most connections or generate the most activity online are not necessarily

the ones that exert the most in°uence in social media [Cha et al. (2009, 2010)].

In addition, whatever in°uence they have appears ephemeral [Chen et al. (2009)].

Instead, people tend to consume information as they have done in the real world

[Rogers (2003)] from people they know and from people they trust [Wolf and Scott

(2013)]. Furthermore, extant theory of social networks is based on observations of

the real world [e.g. Allen (1977); Bailey (1990); Burt (1992); Cartwright (1965);

Coleman (1988); Luhmann (1986); Miller (1978); Parson (1951); Rogers (2003);

Tichy et al. (1979)] and may thus not apply to online social networks [Mayande

(2015); Mayande and Weber (2011)]. Practicing ¯rms may consequently be mis-

allocating a large amount of resources, simply because they do not understand the

behavior and organization of the online social networks with which they interact

[Edwards (2012, 2014)].

In 2011, Xilinx's management realized that there was a lot about their markets

that they did not know, especially when it came to social media. The company hired

SMAF to analyze the Twitter conversations about its products, services and tech-

nologies. Xilinx hoped that SMAF's analysis would provide feedback on how it

(Xilinx) is doing in its existing markets and perhaps identify some new market

opportunities.

SMAF deployed a multi-stage approach that utilized information theory to

reduce nescience. Key in°uencers were identi¯ed by entropy centrality; entropy

centralization quanti¯ed the concentration of information within the whole network.

First, SMAF recorded all tra±c pertaining to Xilinx's Twitter account, @xilinx, for a

period of two months ��� from 01/12/2012 to 03/12/2012. This endeavor reduced
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nescience by identifying a community of 571 accounts (nodes), whose structure is

displayed in Fig. 4. (This community communicated a total of 1176 times ��� 453

@mentions and 723 retweets ��� within the time it was under observation; each tie in

Fig. 4 depicts a relationship that involved at least one @mention or retweet.) This

community would serve as the solution space of any subsequent analysis because any

node that was neither directly nor indirectly connected to @xilinx could not exert

in°uence on that node. It also turned out that the Xilinx Twitter community was a

network that was only moderately active and changed relatively slowly. The number

of retweets within the community exceeded forty on one day only. On some days, no

communication occurred within the network at all. This is relatively benign for a

Twitter community.

SMAF treated the Xilinx community as a directional network by di®erentiating

between the tendency to propagate information and the tendency to consume in-

formation. (This can be observed in Fig. 4, where ties are represented as arrows

whose direction re°ects a net information °ow.) SMAF subsequently continued to

reduce nescience by generating a network that represents the propensity to propa-

gate information and calculating the information propagation potential for each

node in that network using the formula in (3). Table 2 displays the results of this

calculation for the 10 nodes with the greatest propagation potential and normalizes

the results with respect to the node with the largest propagation potential. Table 2

also ranks the nodes in decreasing order of propagation potential.

Nescience was reduced even further when two nodes ��� @xylnao11 and

@ksksue ��� sent a strong signal to SMAF's analysts. Both nodes exhibited a very

@ksksue
acts as 
bridge.

@Xilinx

Star network centered around @xylnao11

Fig. 4. Visualization of the community that contains @xilinx and @xylnao11.
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high propagation potential, yet neither was connected to particularly many other

nodes. SMAF generated the community visualization map in Fig. 4 to interpret these

anomalies. The map revealed that neither node was near @xilinx within the network.

@xylnao11 was at the center of a star-shaped network; he/she communicated with

many other accounts that did not engage with each other. This meant that the

community surrounding @xylnao11 would collapse, if he/she were to become inac-

tive. @ksksue was not part of @xylnao11's direct network, but he/she performed an

important function for @xilinx, by acting as a bridge between @xylnao11's com-

munity and the larger community that surrounded @xilinx. No community would

collapse, if @ksksue were to become inactive, but the link between @xilinx and

@xylnao11 would be severed.

Due to SMAF's analysis, Xilinx became aware of the existence of the community

that surrounded @xylnao11. It also knew how to contact that community. However,

Xilinx did not yet know whether it was in the company's interest to do so.

To make that determination, SMAF conducted a semantic analysis of the net-

work in Fig. 4. This analysis produced a frequency count of the words within the

Twitter conversations between the various actors within the network in Fig. 4. It

also gave SMAF a good idea of who said what to whom on speci¯c dates. SMAF

subsequently decomposed the word cloud, trying to identify conversations within

@xylnao11's community that could be of interest of Xilinx. In the process, SMAF

came up with the word network in Fig. 4, in which @xylnao11's community discussed

topics related to Xilinx. Further analysis of the individual tweets within @xylnao11's

community revealed that the community comprised a group of automotive engineers

in Japan, who were talking about using FPGAs to detect pedestrians through vision

sensors. These conversations were de¯nitely of interest to Xilinx, a leading maker of

FPGAs, as they constituted a potential market opportunity.

8. Discussion of Findings

Reducing nescience through problem localization has been part of the problem-

solving process in semiconductor manufacturing for decades [Weber (2002)], and the

Table 2. Ranking screen names by propagation

potential.

Normalized
propagation

Rank Screename potential

1 xylnao11 1.000
2 alteracorp 0.723

3 AvnetOnDemand 0.685

4 dietposter 0.369

5 FPGATechnology 0.240
6 basaro k 0.174

7 ksksue 0.122

8 ee times 0.110

9 yishii 0.088
10 s osafune 0.077
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ability to quantify nescience has been available for almost 20 years [Weber et al.

(2002)]. However, the extremely urgent conditions that drive problem-solving in

semiconductor manufacturing reinforce the total systems approach to organizational

learning that dominates the industry [Weber et al. (1995)]. Knowing how close you

are to localizing your problem, which is the information that the entropy measure

provides, is less important than focusing on localizing and solving the problem itself.

Furthermore, projections pertaining to the reduction of entropy are subject to in-

terpretation. Thus, pinning a greater entropy di®erential on one experiment as op-

posed another will not necessarily convince management to launch that experiment

¯rst. Despite extensive debate about entropy as a metric, the perceived speed with

which a problem can be resolved still determines the approach in most semiconductor

fabrication facilities [Leachman and Ding (2007); Weber (2002, 2004, 2006, 2013)].

Therefore, the perceived value of utilizing entropy-based metrics to solve yield pro-

blems in semiconductor manufacturing is relatively limited. Yield analysis engineers

successively localize the source of an electrical fault to a particular process step as a

matter of routine problem-solving practice. Entropy decreases implicitly as a conse-

quence; it does not act as a guidepost. And ¯nally, pinning an entropy metric to the

degree that a problem is considered localized does nothing to improve the problem's

structure. Semiconductor yield problems still contain a signi¯cant amount of ambiguity

[Weber (2002)], even if the status of the problem-localization process can be quanti¯ed.

Entropy-based approaches to managing nescience had a higher perceived value in

the medical diagnostics study where the economic environment does not generate a

sense of urgency. In the case of Braincon, the quality of a diagnosis was paramount.

Identifying the potential locus of a bone fracture clearly outweighed the cost dis-

covering this phenomenon or the speed at which the diagnosis was performed.

Furthermore, the diagnosis problem was well-structured, and nescience could be

quanti¯ed by utilizing entropy metrics. Thus, the i3Awas able to run on automated

versions of well-known trial-and-error processes. It acted as a decision aid for phy-

sicians, who could prescribe surgery, a pharmaceutical approach or no treatment at

all, depending on the outcome of the i3A's analysis. The perceived value of entropy-

based metrics was clearly high because they constituted an explicit and integral part

of a technological solution that provided the analysis [Ljuhar (2016); Ljuhar et al.

(2016); Rocha et al. (2008)].

The social network analysis study illustrated how approaches based on infor-

mation theory could help managers cope with nescience by bringing a phenomenon

from the unknown unknown to the known unknown. In this study, SMAF was able

to identify a virtual community of automotive engineers of which Xilinx was totally

unaware. Recognizing the existence of this community allowed Xilinx to develop

approaches that could potentially turn this community into customers. Once the

existence of the community was known, an approach that partitions the solution

space of the problem by trial and error could be attempted, i.e. the problem became

well-structured [Baron (1988); Pople (1982); Reitman (1965); Simon (1973); von

Hippel (1990)]. Once again, entropy-based metrics were at the core of the techno-

logical solution that SMAF provided. They were highly valuable to Xilinx because

they identi¯ed potential customers to that ¯rm.
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The ¯ndings of our investigation illustrate that the perceived value of entropy-

based metrics for nescience varies from setting to setting, suggesting that the nor-

mative value of the theoretical framework presented in this paper depends upon

context. Practitioners valued solutions based on information theory very highly in

medical diagnostics [Ljuhar (2016); Ljuhar et al. (2016); Rocha et al. (2008)] and in

social networks analysis, which are respectively driven by the quality of information

and its availability. In these settings, entropy-based metrics became part of a

technological solution. By contrast, semiconductor manufacturing is driven by yield

[Bohn and Terwiesch (1999)], urgency [Leachman and Ding (2007); Terwiesch and

Bohn (2001)] and capital productivity [Silverman (1994)]. Approaches to problem

solving based on information theory are thus rarely deployed in semiconductor

manufacturing, even though entropy-based metrics characterize the problem local-

ization process in that industry quite well [Weber et al. (2002)].

It should be noted that practitioners do not use the term nescience in their day-to-

day conversations in any of the three studies. Semiconductor yield analysis engineers

tend to talk about \localizing the problem"; many of them may not know what the

term nescience means. Solution providers in the medical diagnostics study use the

term \entropy" quite openly, but their customers, the physicians, do not. Neither

group openly discusses nescience. Centrality metrics are at the center of many dis-

cussions in social network analysis. However, the term nescience is not. These

observations reinforce the notion that practitioners are focused on resolving their

particular problems instead of developing generic approaches to problem solving

(like those discussed in Baron [1988], Marples [1961], Pople [1982], Reitman [1965]

and von Hippel [1990]). Practitioners would consequently have to be educated in

how to apply an actionable, generalizable theory of nescience, once such a theory has

been developed.

9. Conclusions

This paper has described three studies of how quantifying nescience has facilitated

problem solving in high technology settings. In all three studies, variants of Shan-

non's original entropy formula [Shannon and Weaver (1949)] have acted as a proxy

Table 3. Comparing the three empirical studies in this paper.

Study

Drivers of

success

Problem

structure

Perceived value of approaches

based on information theory

Semiconductor

Manufacturing

and Process
Development

Yield, Speed, and

Capital

Productivity

Primarily ill-

structured

Limited (appreciated

but not in use)

Medical (OA)

Diagnostics

Accuracy of

Information

Well-structured Very high–decision aid

(at the core of enabling

technology)
Social Network

Analysis

Availability of

Information

Convertible to

well-structured

Very high (identi¯es potential

customers for client)
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measure for nescience. Therefore, our investigation has demonstrated that infor-

mation theory can provide a theoretical framework for managing nescience in

practical settings. In all three studies, decreasing the entropy of a system was tan-

tamount to reducing nescience by localizing a problem or by shrinking its solution

space. In semiconductor manufacturing, the probability of ¯nding a fault was con-

centrated to a few steps in a process. In the medical diagnostics study, reducing

entropy meant increasing the probability of correctly determining the locus of a

potential fracture. In the study of social media analytics, reducing entropy centrality

and entropy centralization respectively help determine the loci and regions of in-

°uence online. These ¯ndings lead to the conclusion that the descriptive value of the

theoretical framework proposed in Sec. 3 of this paper is rather high.

The three studies presented in this paper constitute a response to a general

scarcity of applied research pertaining to nescience. They must be considered

exploratory due to research methods that were deployed and because a sample of

three settings is rather small. Thus, the generalizability of these studies is

limited. However, the studies transpired in settings that were chosen for their

contrasting economic environments. Entropy metrics were shown to be potentially

applicable to all three settings and in active use in two out of three studies, sug-

gesting that at least some degree of generalizability can be ascribed to the ¯ndings of

this paper.

The observations in all three studies lead to the conclusion that the theoretical

framework presented in this paper is a highly pragmatic one. Approaches to reducing

nescience that can be derived from information theory tend to be deployed in set-

tings in which the quality of information and the availability of information are of

critical value and problems tend to be well-structured (see Table 3). Thus, the

e±cacy of the framework may be limited to such settings. It may be less applicable in

settings that are driven by other factors. This outcome is considered acceptable from

the point of view of pragmatism, which has little concern for universal truths

[Spender (1996, p. 49)]. However, generalizing the framework in this paper toward a

more broadly-based theory of nescience would involve more empirical research that

tests information-theory-based approaches in additional settings in the industries

under study in this paper or in others.

Finally, it should be noted that nescience implies absence of knowledge rather

than absence of information and that entropy is a measure of information rather

than knowledge. As Weber and Mayande point out, \. . . knowledge is more than

information. It is information that is su±ciently certain [Shannon and Weaver

(1949)] and su±ciently contextualized to enable human action [Stehr (1992)]."

[Weber and Mayande (2017, p. TBD)]. Thus, the authors of this paper do not

necessarily conclude that entropy-based measures provide the best theoretical

framework for managing nescience. Attempts to build a more general theory of

nescience (such as those being conducted by García-Leiva [2018] and Klein [2001])

could consequently make signi¯cant contributions to understanding the phenome-

non of nescience and provide signi¯cant value to practitioners. These endeavors will

hopefully stimulate further empirical studies through which evolving theories of

nescience can be validated.
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